Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Mol Psychiatry ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123726

RESUMEN

Converging theoretical frameworks suggest a role and a therapeutic potential for spinal interoceptive pathways in major depressive disorder (MDD). Here, we aimed to evaluate the antidepressant effects and tolerability of transcutaneous spinal direct current stimulation (tsDCS) in MDD. This was a double-blind, randomized, sham-controlled, parallel group, pilot clinical trial in unmedicated adults with moderate MDD. Twenty participants were randomly allocated (1:1 ratio) to receive "active" 2.5 mA or "sham" anodal tsDCS sessions with a thoracic (anode; T10)/right shoulder (cathode) electrode montage 3 times/week for 8 weeks. Change in depression severity (MADRS) scores (prespecified primary outcome) and secondary clinical outcomes were analyzed with ANOVA models. An E-Field model was generated using the active tsDCS parameters. Compared to sham (n = 9), the active tsDCS group (n = 10) showed a greater baseline to endpoint decrease in MADRS score with a large effect size (-14.6 ± 2.5 vs. -21.7 ± 2.3, p = 0.040, d = 0.86). Additionally, compared to sham, active tsDCS induced a greater decrease in MADRS "reported sadness" item (-1.8 ± 0.4 vs. -3.2 ± 0.4, p = 0.012), and a greater cumulative decrease in pre/post tsDCS session diastolic blood pressure change from baseline to endpoint (group difference: 7.9 ± 3.7 mmHg, p = 0.039). Statistical trends in the same direction were observed for MADRS "pessimistic thoughts" item and week-8 CGI-I scores. No group differences were observed in adverse events (AEs) and no serious AEs occurred. The current flow simulation showed electric field at strength within the neuromodulation range (max. ~0.45 V/m) reaching the thoracic spinal gray matter. The results from this pilot study suggest that tsDCS is feasible, well-tolerated, and shows therapeutic potential in MDD. This work also provides the initial framework for the cautious exploration of non-invasive spinal cord neuromodulation in the context of mental health research and therapeutics. The underlying mechanisms warrant further investigation. Clinicaltrials.gov registration: NCT03433339 URL: https://clinicaltrials.gov/ct2/show/NCT03433339 .

2.
Curr Biol ; 33(20): 4343-4352.e4, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37725978

RESUMEN

Short sleep is linked to disturbances in glucose metabolism and may induce a prediabetic condition. The biological clock in the suprachiasmatic nucleus (SCN) regulates the glucose rhythm in the circulation and the sleep-wake cycle. SCN vasopressin neurons (SCNVP) control daily glycemia by regulating the entrance of glucose into the arcuate nucleus (ARC). Thus, we hypothesized that sleep delay may influence SCN neuronal activity. We, therefore, investigated the role of SCNVP when sleep is disrupted by forced locomotor activity. After 2 h of sleep delay, rats exhibited decreased SCNVP neuronal activity, a decrease in the glucose transporter GLUT1 expression in tanycytes lining the third ventricle, lowered glucose entrance into the ARC, and developed hyperglycemia. The association between reduced SCNVP neuronal activity and hyperglycemia in sleep-delayed rats was evidenced by injecting intracerebroventricular vasopressin; this increased GLUT1 immunoreactivity in tanycytes, thus promoting normoglycemia. Following sleep recovery, glucose levels decreased, whereas SCNVP neuronal activity increased. These results imply that sleep-delay-induced changes in SCNVP activity lead to glycemic impairment, inferring that disruption of biological clock function might represent a critical step in developing type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Ratas , Animales , Transportador de Glucosa de Tipo 1/metabolismo , Ritmo Circadiano/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Núcleo Supraquiasmático/fisiología , Sueño , Glucosa/metabolismo , Hiperglucemia/metabolismo , Vasopresinas/metabolismo
3.
Adv Biol (Weinh) ; 7(11): e2200324, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37017509

RESUMEN

One possible pathological mechanism underlying hypertension and its related health consequences is dysfunction of the circadian system-a network of coupled circadian clocks that generates and orchestrates rhythms of ≈24 h in behavior and physiology. To better understand the role of circadian function during the development of hypertension, circadian regulation of motor activity is investigated in spontaneously hypertensive rats (SHRs) before the onset of hypertension and in their age-matched controls-Wistar Kyoto rats (WKYs). Two complementary properties in locomotor activity fluctuations are examined to assessthe multiscale regulatory function of the circadian control network: 1) rhythmicity at ≈24 h and 2) fractal patterns-similar temporal correlation at different time scales (≈0.5-8 h). Compared to WKYs, SHRs have more stable and less fragmented circadian activity rhythms but the changes in the rhythms (e.g., period and amplitude) from constant dark to light conditions are reduced or opposite. SHRs also have altered fractal activity patterns, displaying activity fluctuations with excessive regularity at small timescales that are linked to rigid physiological states. These different rhythmicity/fractal patterns and their different responses to light in SHRs indicate that an altered circadian function may be involved in the development of hypertension.


Asunto(s)
Hipertensión , Prehipertensión , Ratas , Animales , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Fractales , Actividad Motora/fisiología
4.
Adv Biol (Weinh) ; 7(11): e2200116, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-35818679

RESUMEN

Eating during the rest phase is associated with metabolic syndrome, proposed to result from a conflict between food consumption and the energy-saving state imposed by the circadian system. However, in nocturnal rodents, eating during the rest phase (day-feeding, DF) also implies food intake during light exposure. To investigate whether light exposure contributes to DF-induced metabolic impairments, animals receive food during the subjective day without light. A skeleton photoperiod (SP) is used to entrain rats to a 12:12 cycle with two short light pulses framing the subjective day. DF-induced adiposity is prevented by SP, suggesting that the conflict between light and feeding stimulates fat accumulation. However, all animals under SP conditions develop glucose intolerance regardless of their feeding schedule. Moreover, animals under SP with ad libitum or night-feeding have increased adiposity. SP animals show a delayed onset of the daily rise in body temperature and energy expenditure and shorter duration of nighttime activity, which may contribute to the metabolic disturbances. These data emphasize that metabolic homeostasis can only be achieved when all daily cycling variables are synchronized. Even small shifts in the alignment of different metabolic rhythms, such as those induced by SP, may predispose individuals to metabolic disease.


Asunto(s)
Intolerancia a la Glucosa , Fotoperiodo , Ratas , Animales , Adiposidad , Conducta Alimentaria , Ritmo Circadiano , Intolerancia a la Glucosa/etiología , Obesidad/etiología , Esqueleto
5.
Glia ; 71(2): 155-167, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35971989

RESUMEN

Microglia is considered the central nervous system (CNS) resident macrophages that establish an innate immune response against pathogens and toxins. However, the recent studies have shown that microglial gene and protein expression follows a circadian pattern; several immune activation markers and clock genes are expressed rhythmically without the need for an immune stimulus. Furthermore, microglia responds to an immune challenge with different magnitudes depending on the time of the day. This review examines the circadian control of microglia function and the possible physiological implications. For example, we discuss that synaptic prune is performed in the cortex at a certain moment of the day. We also consider the implications of daily microglial function for maintaining biological rhythms like general activity, body temperature, and food intake. We conclude that the developmental stage, brain region, and pathological state are not the only factors to consider for the evaluation of microglial functions; instead, emerging evidence indicates that circadian time as an essential aspect for a better understanding of the role of microglia in CNS physiology.


Asunto(s)
Microglía , Fenómenos Fisiológicos , Microglía/fisiología , Macrófagos , Sistema Nervioso Central , Encéfalo , Inmunidad Innata
6.
Front Nutr ; 9: 999156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204367

RESUMEN

Light at night is an emergent problem for modern society. Rodents exposed to light at night develop a loss of circadian rhythms, which leads to increased adiposity, altered immune response, and increased growth of tumors. In female rats, constant light (LL) eliminates the estrous cycle leading to a state of persistent estrus. The suprachiasmatic nucleus (SCN) drives circadian rhythms, and it interacts with the neuroendocrine network necessary for reproductive function. Timed restricted feeding (RF) exerts a powerful entraining influence on the circadian system, and it can influence the SCN activity and can restore rhythmicity or accelerate re-entrainment in experimental conditions of shift work or jet lag. The present study explored RF in female rats exposed to LL, with the hypothesis that this cyclic condition can rescue or prevent the loss of daily rhythms and benefit the expression of the estrous cycle. Two different feeding schedules were explored: 1. A 12-h food/12-h fasting schedule applied to arrhythmic rats after 3 weeks in LL, visualized as a rescue strategy (LL + RFR, 3 weeks), or applied simultaneously with the first day of LL as a preventive strategy (LL + RFP, 6 weeks). 2. A 12-h window of food intake with food given in four distributed pulses (every 3 h), applied after 3 weeks in LL, as a rescue strategy (LL + PR, 3 weeks) or applied simultaneously with the first day of LL as a preventive strategy (LL + PP, 6 weeks). Here, we present evidence that scheduled feeding can drive daily rhythms of activity and temperature in rats exposed to LL. However, the protocol of distributed feeding pulses was more efficient to restore the day-night activity and core temperature as well as the c-Fos day-night change in the SCN. Likewise, the distributed feeding partially restored the estrous cycle and the ovary morphology under LL condition. Data here provided indicate that the 12-h feeding/12-h fasting window determines the rest-activity cycle and can benefit directly the circadian and reproductive function. Moreover, this effect is stronger when food is distributed along the 12 h of subjective night.

7.
BMC Biol ; 20(1): 58, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236346

RESUMEN

BACKGROUND: Many epidemiological studies revealed that shift work is associated with an increased risk of a number of pathologies, including cardiovascular diseases. An experimental model of shift work in rats has additionally been shown to recapitulate aspects of metabolic disorders observed in human shift workers, including increased fat content and impaired glucose tolerance, and used to demonstrate that restricting food consumption outside working hours prevents shift work-associated obesity and metabolic disturbance. However, the way distinct shift work parameters, such as type of work, quantity, and duration, affect cardiovascular function and the underlying mechanisms, remains poorly understood. Here, we used the rat as a model to characterize the effects of shift work in the heart and determine whether they can be modulated by restricting food intake during the normal active phase. RESULTS: We show that experimental shift work reprograms the heart cycling transcriptome independently of food consumption. While phases of rhythmic gene expression are distributed across the 24-h day in control rats, they are clustered towards discrete times in shift workers. Additionally, preventing food intake during shift work affects the expression level of hundreds of genes in the heart, including genes encoding components of the extracellular matrix and inflammatory markers found in transcriptional signatures associated with pressure overload and cardiac hypertrophy. Consistent with this, the heart of shift worker rats not eating during work hours, but having access to food outside of shift work, exhibits increased collagen 1 deposition and displays increased infiltration by immune cells. While maintaining food access during shift work has less effects on gene expression, genes found in transcriptional signatures of cardiac hypertrophy remain affected, and the heart of shift worker rats exhibits fibrosis without inflammation. CONCLUSIONS: Together, our findings unraveled differential effects of food consumption on remodeled transcriptional profiles of the heart in shift worker rats. They also provide insights into how shift work affects cardiac function and suggest that some interventions aiming at mitigating metabolic disorders in shift workers may have adverse effects on cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Metabólicas , Horario de Trabajo por Turnos , Animales , Cardiomegalia , Ritmo Circadiano , Ingestión de Alimentos , Fibrosis , Inflamación/genética , Ratas , Horario de Trabajo por Turnos/efectos adversos , Transcriptoma
8.
Curr Biol ; 32(4): 796-805.e4, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35030330

RESUMEN

Glycemia is maintained within very narrow boundaries with less than 5% variation at a given time of the day. However, over the circadian cycle, glycemia changes with almost 50% difference. How the suprachiasmatic nucleus, the biological clock, maintains these day-night variations with such tiny disparities remains obscure. We show that via vasopressin release at the beginning of the sleep phase, the suprachiasmatic nucleus increases the glucose transporter GLUT1 in tanycytes. Hereby GLUT1 promotes glucose entrance into the arcuate nucleus, thereby lowering peripheral glycemia. Conversely, blocking vasopressin activity or the GLUT1 transporter at the daily trough of glycemia increases circulating glucose levels usually seen at the peak of the rhythm. Thus, biological clock-controlled mechanisms promoting glucose entry into the arcuate nucleus explain why peripheral blood glucose is low before sleep onset.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Glucosa , Glucemia , Ritmo Circadiano , Transportador de Glucosa de Tipo 1 , Núcleo Supraquiasmático , Vasopresinas
11.
Handb Clin Neurol ; 182: ix-xi, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34266616
13.
Handb Clin Neurol ; 180: 45-63, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225948

RESUMEN

A major function of the nervous system is to maintain a relatively constant internal environment. The distinction between our external environment (i.e., the environment that we live in and that is subject to major changes, such as temperature, humidity, and food availability) and our internal environment (i.e., the environment formed by the fluids surrounding our bodily tissues and that has a very stable composition) was pointed out in 1878 by Claude Bernard (1814-1878). Later on, it was indicated by Walter Cannon (1871-1945) that the internal environment is not really constant, but rather shows limited variability. Cannon named the mechanism maintaining this limited variability homeostasis. Claude Bernard envisioned that, for optimal health, all physiologic processes in the body needed to maintain homeostasis and should be in perfect harmony with each other. This is illustrated by the fact that, for instance, during the sleep-wake cycle important elements of our physiology such as body temperature, circulating glucose, and cortisol levels show important variations but are in perfect synchrony with each other. These variations are driven by the biologic clock in interaction with hypothalamic target areas, among which is the paraventricular nucleus of the hypothalamus (PVN), a core brain structure that controls the neuroendocrine and autonomic nervous systems and thus is key for integrating central and peripheral information and implementing homeostasis. This chapter focuses on the anatomic connections between the biologic clock and the PVN to modulate homeostasis according to the daily sleep-wake rhythm. Experimental studies have revealed a highly specialized organization of the connections between the clock neurons and neuroendocrine system as well as preautonomic neurons in the PVN. These complex connections ensure a logical coordination between behavioral, endocrine, and metabolic functions that helps the organism maintain homeostasis throughout the day.


Asunto(s)
Hipotálamo , Núcleo Hipotalámico Paraventricular , Sistema Nervioso Autónomo , Humanos , Neuronas , Sistemas Neurosecretores
14.
Handb Clin Neurol ; 179: 233-247, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225965

RESUMEN

The circadian system, composed of the central autonomous clock, the suprachiasmatic nucleus (SCN), and systems of the body that follow the signals of the SCN, continuously change the homeostatic set points of the body over the day-night cycle. Changes in the body's physiological state that do not agree with the time of the day feedback to the hypothalamus, and provide input to the SCN to adjust the condition, thus reaching another set point required by the changed conditions. This allows the adjustment of the set points to another level when environmental conditions change, which is thought to promote adaptation and survival. In fasting, the body temperature drops to a lower level only at the beginning of the sleep phase. Stressful conditions raise blood pressure relatively more during the active period than during the rest phase. Extensive, mostly reciprocal SCN interactions, with hypothalamic networks, induce these physiological adjustments by hormonal and autonomic control of the body's organs. More importantly, in addition to SCN's hormonal and autonomic influences, SCN induced behavior, such as rhythmic food intake, induces the oscillation of many genes in all tissues, including the so-called clock genes, which have an essential role as a transcriptional driving force for numerous cellular processes. Consequently, the light-dark cycle, the rhythm of the SCN, and the resulting rhythm in behavior need to be perfectly synchronized, especially where it involves synchronizing food intake with the activity phase. If these rhythms are not synchronous for extended periods of times, such as during shift work, light exposure at night, or frequent night eating, disease may develop. As such, our circadian system is a perfect illustration of how hypothalamic-driven processes depend on and interact with each other and need to be in seamless synchrony with the body's physiology.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Sistema Nervioso Autónomo , Homeostasis , Humanos , Hipotálamo , Núcleo Supraquiasmático
15.
Handb Clin Neurol ; 179: 371-382, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225976

RESUMEN

Antipsychotic drugs are efficacious first-line treatments for many individuals diagnosed with a psychiatric illness. However, their adverse metabolic side-effect profile, which resembles the metabolic syndrome, represents a significant clinical problem that increases morbidity and limits treatment adherence. Moreover, the mechanisms involved in antipsychotic-induced adverse metabolic effects (AMEs) are unknown and mitigating strategies and interventions are limited. However, recent clinical trials show that nightly administration of exogenous melatonin may mitigate or even prevent antipsychotic-induced AMEs. This clinical evidence in combination with recent preclinical data implicate the circadian system in antipsychotic-induced AMEs and their mitigation. In this chapter, we provide an overview on the circadian system and its involvement in antipsychotic-induced AMEs, as well as the potential beneficial effect of nightly melatonin administration to mitigate them.


Asunto(s)
Antipsicóticos , Melatonina , Trastornos Mentales , Síndrome Metabólico , Antipsicóticos/efectos adversos , Humanos , Melatonina/uso terapéutico , Trastornos Mentales/tratamiento farmacológico
17.
Handb Clin Neurol ; 179: ix-xi, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225988
18.
J Neuroendocrinol ; 33(7): e13009, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34309094
19.
Neurosci Lett ; 762: 136144, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34332031

RESUMEN

Baroreflex sensitivity (BRS) is an important function of the nervous system and essential for maintaining blood pressure levels in the physiological range. In hypertension, BRS is decreased both in man and animals. Although increased sympathetic activity is thought to be the main cause of decreased BRS, hence the development of hypertension, the BRS is regulated by both sympathetic (SNS) and parasympathetic (PNS) nervous system. Here, we analyzed neuropeptide changes in the lateral hypothalamus (LH), which favours the SNS activity, as well as in PNS nuclei in the brainstem of spontaneously hypertensive rats (SHR) and their normotensive controls (Wistar Kyoto rats- WKY). The analyses revealed that in the WKY rats the hypothalamic orexin system, known for its role in sympathetic activation, showed a substantial decrease when animals age. At the same time, however, such a decrease was not observed when hypertension developed in the SHR. In contrast, Neuropeptide FF (NPFF) and Prolactin Releasing Peptide (PrRP) expression in the PNS associated Nucleus Tractus Solitarius (NTS) and Dorsal Motor Nucleus of the Vagus (DMV) diminished substantially, not only after the establishment of hypertension but also before its onset. Therefore, the current results indicate early changes in areas of the central nervous system involved in SNS and PNS control of blood pressure and associated with the development of hypertension.


Asunto(s)
Tronco Encefálico/metabolismo , Hipertensión/fisiopatología , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Orexinas/metabolismo , Animales , Sistema Nervioso Autónomo/fisiopatología , Barorreflejo/fisiología , Tronco Encefálico/fisiopatología , Hipotálamo/fisiopatología , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
20.
J Neuroendocrinol ; 33(7): e12998, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34189788

RESUMEN

Vasopressin (VP) is an important hormone produced in the supraoptic (SON) and paraventricular nucleus (PVN) with antidiuretic and vasoconstrictor functions in the periphery. As one of the first discovered peptide hormones, VP was also shown to act as a neurotransmitter, where VP is produced and released under the influence of various stimuli. VP is one of the core signals via which the biological clock, the suprachiasmatic nucleus (SCN), imposes its rhythm on its target structures and its production and release is influenced by the rhythm of clock genes and the light/dark cycle. This is contrasted with VP production and release from the bed nucleus of the stria terminalis and the medial amygdala, which is influenced by gonadal hormones, as well as with VP originating from the PVN and SON, which is released in the neural lobe and central targets. The release of VP from the SCN signals the near arrival of the resting phase in rodents and prepares their physiology accordingly by down-modulating corticosterone secretion, the reproductive cycle and locomotor activity. All these circadian variables are regulated within very narrow boundaries at a specific time of the day, where day-to-day variation is less than 5% at any particular hour. However, the circadian peak values can be at least ten times higher than the circadian trough values, indicating the need for an elaborate feedback system to inform the SCN and other participating nuclei about the actual levels reached during the circadian cycle. In short, the interplay between SCN circadian output and peripheral feedback to the SCN is essential for the adequate organisation of all circadian rhythms in physiology and behaviour.


Asunto(s)
Conducta/fisiología , Relojes Biológicos/fisiología , Descanso/fisiología , Vasopresinas/fisiología , Animales , Ritmo Circadiano/fisiología , Corticosterona/metabolismo , Corticosterona/fisiología , Humanos , Fotoperiodo , Transducción de Señal/fisiología , Núcleo Supraquiasmático/metabolismo , Vasopresinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...